- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Samir Taoudi
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Development of tau-specific therapeutic and diagnostic antibodies
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Stem cells

Stem cells are unique cells in our body that can create and replenish diverse cell types – every type of body cell in embryos, and every type of cell in a particular organ in adults.
Our researchers are revealing how stem cells function, and the links between stem cells and cancer. We are also contributing to research into stem cell therapies of the future.
Our stem cell research
Our researchers are investigating many aspects of stem cell function, with the goals of:
- Defining how tissue-specific stem cells function in many organs including the blood, breast, brain and lung.
- Understanding which genetic modifications give stem cells their unique properties.
- Revealing the similarities between stem cells and cancer cells, and explaining how cancer can originate from defective stem cells.
- Advancing the clinical use of stem cells to treat many diseases.
What are stem cells?
Stem cells are unique cells that can divide indefinitely and give rise to many different cell types. Stem cells are critical for both:
- Embryonic development, in which stem cells produce different cell types in our body.
- Repairing and replenishing adult tissues, replacing cells that are damaged or are lost as part of their role in the body (such as the renewal of skin or immune cells).
Stem cells are considered ‘undifferentiated’, meaning they have not changed into, or committed to developing into, a specialised type of cell.
Stem cells can divide indefinitely. This is in contrast to most cells in our body which can divide only a limited number of times.
When a stem cell divides, it gives rise to two ‘daughter’ cells. Each of these cells can either:
- ‘Differentiate’ into, or commit to becoming, a mature cell, such as a lymphocyte or a neuron.
- Remain a stem cell. This is called ‘self renewal’ and ensures the body retains enough stem cells to continue to replace cells as needed.
Once a daughter cell differentiates, it cannot return to being a stem cell. The process of changing from a stem cell to a mature cell involves changes to which genes are switched on within the cell. Our researchers are discovering which genes are switched on in stem cells, but are epigenetically switched off when a cell differentiates.
There are two types of stem cells:
- Pluripotent stem cells, that can give rise to any type of cell in the body. These are the stem cells that are found in early embryos.
- Adult, or tissue-specific stem cells, that give rise to cells within a certain body system or organ. For example, blood stem cells replenish blood cells such as red blood cells and lymphocytes; breast stem cells can develop into any of the cell types in ducts of the breast.
Discovering stem cells and understanding how they function is giving new insights into how different tissues of the body develop and are maintained and repaired.
Our researchers were the first in the world to isolate breast stem cells, which give rise to the different, specialised types of cells within the adult breast. The information gleaned in this research is now being used to understand lung development, and reveal how developmental errors in the lung occur.
Stem cells in disease
Research into normal stem cell function is revealing how defective stem cells contribute to disease. Understanding the molecules that control stem cells is also providing new strategies for treating diseases associated with stem cells.
Stem cells and cancer
Stem cells share many features with cancer cells, including:
- Unlimited cell division.
- Ability to self-renew.
- Being undifferentiated.
Many genes involved in stem cell function are corrupted in cancer cells, providing cancer cells with stem cell-like features. A potential new strategy for treating cancer may be to deprive the cancer cells of their stem cell-like properties. Research suggests this may be enough to halt cancer cell growth.
Genetic changes in stem cells may contribute to cancer formation, at least in some organs. Cancer cells may also acquire the properties of stem cells, and behave as ‘cancer stem cells’.
Our researchers have discovered that breast cancer stem cells play an important role in the development of certain types of breast cancer. Other cancers may also arise from defective stem cells.
Stem cell treatments
Stem cells are the natural source of all the cells in the body. Many tissues, such as neurons in the brain and spinal cord, grow during embryonic development and childhood, but cannot be replenished in adults.
When an adult suffers brain damage, such as from a head injury or stroke, often the damaged neurons cannot be replaced. This means the damage, and the impaired brain function it causes, can be permanent. Many other organs also cannot fully repair themselves.
It is hoped that in the future clinicians may be able to re-awaken stem cells within our bodies to replace damaged tissues. Research explaining how stem cell function is controlled is providing insights into how stem cells may be manipulated to treat diseases.
Stem cell therapy is already a reality for blood diseases. Blood stem cells can be transplanted into people with problems producing enough blood cells, such as people with immunodeficiencies or who have been treated with chemotherapy. It is hoped that in the future, stem cell transplants will become a clinical reality for many more conditions.
Researchers:
Dr Shalin Naik co-hosts a new ABC TV health and medical science series, Ask the Doctor.
Our research has discovered stem cells in the adult pancreas that can be turned into insulin producing cells.
We have discovered that breast stem cells and their ‘daughters’ have a much longer lifespan than previously thought
Dr Matthew McCormack explains his research into a common type of childhood leukaemia.