- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Samir Taoudi
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Development of tau-specific therapeutic and diagnostic antibodies
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
New compound shows promise in treating multiple human cancers
20 October 2016
A new compound, discovered jointly by international pharmaceutical company Servier, headquartered in France, and Vernalis (R&D), a company based in the UK, has been shown by researchers at the Walter and Eliza Hall Institute and Servier to block a protein that is essential for the sustained growth of up to a quarter of all cancers.
for the growth of many cancers. Australian researchers who
collaborated with industry partner Servier included (L-R):
Dr Gemma Kelly, Professor Andrew Roberts (both Walter and
Eliza Hall Institute), Associate Professor Andrew Wei
(The Alfred Hospital), Professor David Huang, Dr Jianan Gong,
Associate Professor Guillaume Lessene (all Walter and
Eliza Hall Institute), and Dr Donia Moujalled (The Alfred Hospital)
The research presents a new way to efficiently kill these cancerous cells and holds promise for the treatment of blood cancers such as acute myeloid leukaemia, lymphoma and multiple myeloma, as well as solid cancers such as melanoma and cancers of the lung and breast. It is published online today in the journal Nature.
The Servier compound - S63845 - targets a protein of the BCL2 family, called MCL1, which is essential for the sustained survival of these cancer cells.
Institute scientist Associate Professor Guillaume Lessene, who led the Walter and Eliza Hall Institute’s research team in Melbourne, Australia, said the work provided the first clear preclinical evidence that inhibiting MCL1 was effective in targeting several cancer types.
“MCL1 is important for many cancers because it is a pro-survival protein that allows the cancerous cells to evade the process of programmed cell death that normally removes cancer cells from the body,” Associate Professor Lessene said. “Extensive studies performed in a variety of cancer models have shown that S63845 potently targets cancer cells dependent on MCL1 for their survival.”
The institute team of Associate Professor Lessene worked with haematologist Associate Professor Andrew Wei and Dr Donia Moujalled from The Alfred Hospital and Servier scientists, to demonstrate that not only was S63845 effective against several cancer types, but that it could also be delivered at doses that were well tolerated by normal cells.
Dr Olivier Geneste, Director of Oncology Research at Servier, said this preclinical research represented major findings regarding the druggability of MCL1, a valuable and highly challenging target. “S63845 was discovered through collaboration with the fragment and structure based discovery expertise at Vernalis,” he said. “As part of the ongoing Servier / Novartis collaboration on this target class, clinical development of a MCL1 inhibitor should be launched in the near future.”
Associate Professor Lessene said the research provided further evidence of the usefulness of a new class of anti-cancer drugs called BH3 mimetics. “BH3 mimetics inhibit a group of proteins known as the ‘pro-survival BCL-2 proteins’,” he said. “MCL1 is a member of this protein family, and inhibiting it activates the process of programmed cell death. Walter and Eliza Hall Institute researchers revealed the role of BCL-2 in cancer more than 28 years ago and the essential role of MCL1 for the survival of malignant cells four years ago.”
The research was supported through a research collaboration with Servier and through funding from the National Health and Medical Research Council of Australia, the Leukemia and Lymphoma Society (US), Cancer Council Victoria, the Kay Kendall Leukemia Fund, Victorian Cancer Agency, Australian Cancer Research Foundation, the Victorian Government Operational Infrastructure Scheme and the estate of Anthony Redstone.
The Walter and Eliza Hall Institute is the research powerhouse of the Victorian Comprehensive Cancer Centre, an alliance of leading Victorian hospitals and research centres committed to controlling cancer.
About Servier
Servier is an international pharmaceutical company governed by a non-profit Foundation and headquartered in France. With a strong international presence in 148 countries and a turnover of 3.9 billion euro in 2015, Servier employs over 21,200 people worldwide. Corporate growth is driven by Servier’s constant search for innovation in five areas of excellence: cardiology, oncology, metabolism, neuropsychiatry and rheumatology, as well as by its activities in high quality generic drugs. Being completely independent, the Group reinvests 25% of Servier’s products turnover in Research and Development, and all its profits in its growth.
Becoming a key player in oncology is part of Servier’s long-term strategy. Currently, there are nine molecular entities in clinical development in this area, targeting gastric and lung cancers and other solid tumors, as well as various leukemias and lymphomas. This portfolio of innovative cancer treatments is being developed with partners worldwide, and covers different cancer hallmarks and modalities, including cytotoxics, proapoptotics, targeted, immune and cellular therapies.
More information is available at: www.servier.com
For further information:
Vanessa Solomon
Communications Adviser
Ph: +61 3 9345 2971
Mob: +61 431 766 715
Email: solomon@wehi.edu.au
Servier External Communications
Tel: +33 1 5572 6037
Email: presse@servier.fr
Super Content:
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.
Professor Andrew Roberts and collaborators have shown that patients with an advanced form of leukaemia can achieve complete remission with a novel tablet treatment.
Institute researchers have been recognised for their contributions to the field of cell death research.
A collaborative research team has identified a new way of protecting female fertility after cancer therapy
Researchers have genetically engineered a laboratory model for testing the effectiveness of new anti-cancer drugs called MCL-1 inhibitors.