-

3D ‘scaffold’ map to help the search for new cancer treatments

27 October 2017
Key Researchers
Photo of Isabelle Lucet with colourful LED lights in the background
Division Head
Drs Isabelle Lucet and Onisha Patel
Dr Isabelle Lucet, Dr Onisha Patel and collaborators
have solved the 3D structure of molecular scaffold
SgK223, which is known to play a critical role in the
development and spread of some aggressive cancers. 
Melbourne researchers have produced the first three-dimensional (3D) map of a molecular ‘scaffold’ called SgK223, known to play a critical role in the development and spread of aggressive breastcolon and pancreatic cancers.

Armed with the map, the research team is looking at ways of targeting parts of the scaffold molecule critical for its function. They hope the research will lead to novel strategies to target cancer.

The research was the result of a long-standing collaboration between Walter and Eliza Hall Institute researchers Dr Onisha Patel and Dr Isabelle Lucet and Monash University’s Biomedicine Research Institute researcher Professor Roger Daly, with important inputs from Dr Michael Griffin at Bio21 Institute, University of Melbourne, and Dr Santosh Panjikar at the Australian Synchrotron. The research was published today in Nature Communications.

‘Dead’ enzyme mapped

Dr Lucet said SgK223 was a member of a family of proteins called pseudokinases and had been classified for a long time as a ‘dead’ enzyme.

“SgK223 doesn’t have the measurable activity that we see with other types of enzymes, and this meant it was largely ignored. However in the past decade, we’ve come to understand that this ‘dead enzyme’ plays an active and important role in cell signalling,” Dr Lucet said.

SgK223 is unique among pseudokinases because it acts as a molecular scaffold, facilitating the assembly of vital signalling molecules whose activities control the normal functions of a cell, such as cell shape and migration.

“Because of its primary role in facilitating the assembly of signalling molecules, high levels of SgK223 can jeopardise the normal functions of a cell and contribute to changes that lead to cancer,” Dr Lucet said.

“High levels of SgK223 have been found in some aggressive subtypes of breast, colon and pancreatic cancers, suggesting that SgK223 could be a potential target for novel anti-cancer therapies.”

Unprecedented view

Dr Patel said facilities at the Australian Synchrotron enabled the team to get an unprecedented view of SgK223.

“Because molecular scaffolds such as SgK223 are structurally quite large, we focused on a critical part of the protein and produced a 3D map using facilities at the Australian Synchrotron. With this map, we have now identified several regions of SgK223 that are essential for its ability to assemble signalling molecules,” Dr Patel said.

“Solving the 3D map of SgK223 is a critical step in the effort to discover how this molecular scaffold functions, and future research will verify whether targeting SgK223 could have an impact in treating cancers.”

Impact on cancer

Professor Daly said the 3D map would enable researchers to investigate how targeting SgK223 impacts cancer cells.

“With this 3D map, we can now start to look at how inhibiting the function of SgK223 by targeting particular regions of the scaffold affects cell growth and spread in cancers where it is present at high levels, such as triple negative breast cancers,” Professor Daly said.

World-class facilities at the Australian Synchrotron in Melbourne were instrumental in the discovery, Dr Lucet said. “The Australian Synchrotron is the only facility in the Southern Hemisphere that has the specialised technology required to provide us with detailed knowledge essential for seeing molecules at an atomic level. This is essential if we wish to discover and develop drugs that target and interfere with molecules that drive cancer and other diseases,” Dr Lucet said.

The research was supported by the Australian National Health and Medical Research Council, Australian Cancer Research Foundation, Australian Research Council and Victorian State Government Operational Infrastructure Support Program.

The Walter and Eliza Hall Institute is the research powerhouse of the Victorian Comprehensive Cancer Centre, an alliance of leading Victorian hospitals and research centres committed to controlling cancer.

Media enquiries

M: 0475 751 811
E: communityrelations@wehi.edu.au

WEHI Authors
Photo of Isabelle Lucet with colourful LED lights in the background
Division Head
Support us

Together we can create a brighter future

Your support will help WEHI’s researchers make discoveries and find treatments to ensure healthier, longer lives for you and your loved ones.

Sign up to our quarterly newsletter Illuminate

Find out about recent discoveries, community supporters and more.

Illuminate Summer 2023
View the current issue