- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Chemical Biology
- ACRF Stem Cells and Cancer
- Bioinformatics
- Cancer and Haematology
- Cell Signalling and Cell Death
- Development and Cancer
- Immunology
- Infection and Immunity
- Inflammation
- Molecular Genetics of Cancer
- Molecular Immunology
- Molecular Medicine
- Population Health and Immunity
- Structural Biology
- Systems Biology and Personalised Medicine
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- Opportunities in platform technologies
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Fut8 Sugar coating immuno oncology
- Intercepting inflammation with RIPK2 inhibitors
- Novel checkpoints NK cells emerge as key players in IO
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting plasmacytoid dendritic cells for systemic lupus erythematosus
- Treating Epstein-Barr virus associated malignancies
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Research fields
- Bioinformatics
- Cancer biology
- Cell death
- Cell signalling
- Clinical translation
- Computational biology
- Drug discovery
- Epigenetics
- Flow cytometry
- Genomics
- Haematology
- Imaging
- Immunology
- Infection
- Inflammation
- Medicinal chemistry
- Personalised medicine
- Proteomics
- Stem cells
- Structural biology
- Systems biology
- Vaccine development
- People
- Anne-Laure Puaux
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Anne Voss
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Edwin Hawkins
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marnie Blewitt
- Associate Professor Matthew Ritchie
- Associate Professor Mike Lawrence
- Associate Professor Nicholas Huntington
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bob Anderson
- Dr Brad Sleebs
- Dr David Komander
- Dr Diana Hansen
- Dr Drew Berry
- Dr Emma Josefsson
- Dr Ethan Goddard-Borger
- Dr Gary Pitt
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Hélène Jousset Sabroux
- Dr Ian Majewski
- Dr Ian Street
- Dr Jacqui Gulbis
- Dr James Vince
- Dr Jason Tye-Din
- Dr Joanna Groom
- Dr John Wentworth
- Dr Julie Mercer
- Dr Kate Sutherland
- Dr Kelly Rogers
- Dr Ken Pang
- Dr Leanne Robinson
- Dr Leigh Coultas
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Marie-Liesse Asselin-Labat
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Melissa Davis
- Dr Michael Low
- Dr Misty Jenkins
- Dr Peter Czabotar
- Dr Philippe Bouillet
- Dr Priscilla Auyeung
- Dr Rhys Allan
- Dr Ruth Kluck
- Dr Samar Ojaimi
- Dr Samir Taoudi
- Dr Sant-Rayn Pasricha
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Stan Balbata
- Mr Steve Droste
- Ms Carolyn MacDonald
- Ms Samantha Ludolf
- Ms Wendy Hertan
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Clare Scott
- Professor David Huang
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Li Wu
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Melanie Bahlo
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- 3D and 4D imaging of thymic T cell differentiation
- Activating https://www.wehi.edu.au/node/add/individual-student-research-page#Parkin to treat Parkinson’s disease
- Activation, regulation, and biological roles of E3 ubiquitin ligases
- Bioinformatics methods for detecting and making sense of somatic genomic rearrangements
- Characterising regulatory T cells in coeliac disease
- Computational melanoma genomics
- Deep profiling of blood cancers during targeted therapy
- Defining the role of necroptosis in platelet production and function
- Determining the migration signals leading to protective immune responses
- Developing mucolytics to treat chronic respiratory diseases
- Developing new tools to visualise necroptotic cell death
- Development of live-cell, automated microscopy techniques for studying malaria
- Development of tools to inform malaria vaccine design
- Discovering new genetic causes of primary antibody deficiencies
- Discovery of novel drug combinations for the treatment of bowel cancer
- Dissecting the induction and integration of T cell migration cues
- Drug targets and compounds that block growth of malaria parasites
- Effects of nutrition on immunity and infection in Asia and Africa
- Eosinophil and neutrophil heterogeneity
- Eosinophil maturation
- Epigenetic regulation of systemic iron homeostasis
- Functional differences between young and old platelets
- Generation of cytokine antagonists
- Genetic dissection of mechanisms of Plasmodium invasion
- Genomic characterisation of epigenetic regulators involved in X inactivation
- High resolution 3-dimensional imaging to characterise metastatic cancers
- High-resolution imaging of host cell invasion by the malaria parasite
- Home renovations: understanding how Toxoplasma redecorates its host cell
- How the epigenetic regulator SMCHD1 works and how to target it to treat disease
- Human monoclonal antibodies against malaria infection
- Identification of malaria parasite entry receptors
- Identification of new therapeutic opportunities for pancreatic cancer
- Identifying disease-causing haplotypes with hidden Markov models
- Interleukin-11 in gastrointestinal bacterial infections
- Investigating mechanisms of cell death and survival using zebrafish
- Investigating new paths to selective modulation of potassium channels
- Let me in! How Toxoplasma invades human cells
- Long-read sequencing for transcriptome and epigenome analysis
- Macro-evolution in cancer
- Mapping DNA repair networks in cancer
- Mapping how multiple malaria episodes are related
- Modelling gene regulatory systems
- Modulation of immune responses by immunosuppressive chemokines
- Molecular basis for inherited Parkinson’s disease mechanism of PINK1
- Mucus at the molecular level
- Novel cell death and inflammatory modulators in lupus
- Plasmodium vivax host-parasite interactions: impact on immunity
- Predicting drug response in cancer
- Programming T cells to defend against infections
- Reconstructing the immune response: from molecules to cells to systems
- Regulation of cytokine signalling
- Screening for regulators of jumping genes
- Target identification of potent antimalarial agents
- Targeting the immune system in cancer
- The role of interleukin-11 in acute myeloid leukaemia
- Transmembrane control of type I cytokine receptor activation
- Uncovering the roles of long non-coding RNAs in human bowel cancer
- Understanding retinal eye diseases with retinal transcriptomic data analysis
- Understanding the role of stromal cells in pancreatic cancer growth
- Unravelling the tumour suppressor network in models of lung cancer
- Utilising pre-clinical models to discover novel therapies for tuberculosis
- Zombieland: evolution of a dead enzyme that kills cells by necroptosis
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Casey Ah-Cann
- Catia Pierotti
- Charlotte Slade
- Daniel Cameron
- Emma Nolan
- Jason Brouwer
- Joy Liu
- Lucille Rankin
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Sarah Garner
- Simona Seizova
- Michael Low
- Sofonias Tessema
- Santini Subramaniam
- Miles Horton
- Alexandra Gurzau
- Tamara Marcus
- Nicholas Chandler
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Bioinformatics

Bioinformatics combines mathematics, statistics and computer science to solve complex biological problems.
Our bioinformatics research is revealing how molecules and cells normally function, and what changes occur in disease.
Bioinformatics research at the Institute
Our bioinformaticians are:
- Revealing the changes in molecules and cells that cause disease.
- Developing new methods to analyse complex experimental data, to provide new insights into health and disease.
- Identifying new avenues for treatments that target the molecules involved in disease.
Bioinformatics research is integrated within many other fields of our research in particular:
What is bioinformatics?
Bioinformatics uses mathematics, statistics and computer science to analyse complex biological systems.
A single cell contains thousands of molecules that are essential to the healthy functioning and development of the cell. Changes in these molecules can influence how cells behave. Certain changes within cells underpin disease formation.
Current medical research technologies can generate vast amounts of complex data, for example by simultaneously analysing the intricate sequence of the three billion DNA bases in the human genome.
Bioinformatics develops new ways to analyse this data, to understand more fully what is occurring in complex biological systems.
Bioinformatics analyses give researchers new insights into how molecules behave within cells, and how cells interact or change in disease.
From small molecules to big data
To study the role of different molecules in cells, and how changes cause disease, our researchers use a range of experimental techniques. Their aims include:
- Revealing and analysing the genome of diseased cells or infectious agents to understand how they cause disease, and how they might be treated.
- Uncovering the changes that convert a healthy cell into a diseased cell.
- Discovering genetic variants shared within families or populations that confer susceptibility to a particular disease.
- Simultaneously measuring variations in genes being switched on or off (gene expression), and aligning this with other changes within cells or tissues.
- Detecting how a treatment influences the behaviour of cells.
The experiments that measure these can generate huge amounts of data. Our bioinformatics researchers develop appropriate methods that enable the in-depth analysis and interpretation of these data.
From big data to new treatments
Bioinformatics analyses can provide new insights into the roles of particular molecules within cells, and how these molecules vary between people. This is uncovering the molecular causes of many diseases. In some cases, bioinformatics research can also pinpoint new strategies for diagnosing or treating diseases.
Bioinformatics is an important aspect of personalised medicine, which matches individual patients with the best treatment for their disease.
Developing new bioinformatics techniques
Bioinformatics research relies heavily on computational and statistical strategies to analyse and interpret huge data sets. Many of our bioinformatics researchers have been trained in mathematics, statistics and computer science. This allows them to develop new ways to address complex research problems presented through their collaborations with other researchers.
Researchers:
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.
Bioinformaticians identify the first evidence of genes involved in a currently incurable degenerative eye disease.