- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
Brain cancer

Brain cancer causes more deaths in people under the age of 40 than any other cancer, and more deaths in Australian children than any other disease.
Brain cancer survival rates are low and have barely changed in 30 years. Our research into brain cancer is focused on finding new therapies to improve outcomes for the 1900 Australians diagnosed with brain cancer each year.
Brain cancer research at WEHI
Our researchers are:
- Defining the changes in brain cells that allow cancer to grow.
- Working to develop potential new treatments for brain cancer.
- Testing whether drugs that block cell survival could be effective in treating brain cancers.
- Investigating whether the body’s own immune system could be employed to fight brain cancer.
The Brain Cancer Centre
The Brain Cancer Centre was launched publicly on 25 October 2021. The centre was founded by Carrie’s Beanies 4 Brain Cancer and established in partnership with WEHI with support from the Victorian Government.
The Brain Cancer Centre brings together the best and brightest minds with a single focus: to improve outcomes for brain cancer patients NOW and in the future. Our world-class research teams will work collaboratively to develop new treatments and trials so that patients diagnosed with brain cancer are given real hope.
Visit The Brain Cancer Centre website to learn more.
What is brain cancer?
Brain cancer is the abnormal, uncontrolled growth of cells in the brain.
The brain has many different ‘control centres’ that regulate all of our body functions, from breathing to walking. When the cancer grows it can damage these control centres. Even slow growing (benign) tumours can be serious if they affect a vital area of the brain.
The brain is composed of nerve cells that send messages to and from the body, and supporting cells that enable nerve cells to function. Cancer can originate in many different cell types, giving rise to various forms of brain cancer.
Research at WEHI focusses on:
- Glioblastoma multiforme (GBM), the most common and dangerous form of brain cancer. GBM arises from glial cells that support nerve cell function. Less than five per cent of people with GBM survive for five years or longer.
- Diffuse Intrinsic Pontine Glioma (DIPG), also called Paediatric Diffuse Midline Glioma, which is the most aggressive form of brain cancer in children.
- Medulloblastomas, which is the most common brain cancer in children.
- Collecting comprehensive clinical and translational data on all patients diagnosed with brain tumours.
- Investigating new models to improve access to clinical trials for patients with glioma.
- Exploring novel platforms to direct personalised therapy.
Brain cancer rarely spreads (metastasises) to other parts of the body, but cancer cells from other organs can spread to the brain.
Symptoms of brain cancer
The symptoms of brain cancer depend on the type of brain cancer, its size and where it is located in the brain.
Common symptoms of brain cancer include headaches, seizures, nausea and vomiting. Depending on the part of the brain affected, people with brain cancer may also experience changes in speech, vision, hearing, balance, memory, mood, muscle tone or sensation.
Risk factors for developing brain cancer
Most cases of brain cancer arise spontaneously and no cause can be identified. Some factors are known to increase a person’s risk of developing brain cancer, including:
- Ageing
- Exposure to medical radiation, such as radiotherapy, CT scans or x-rays to the head during treatment for a previous cancer
- Having close relatives with brain cancer
How is brain cancer treated?
Treatment for brain cancer is challenging because it affects the body’s most vital organ.
Some brain cancers can be safely removed by surgery, however in other cases this cannot be done without damage to normal brain tissue. For example, DIPG cannot be surgically removed because it originates in the brainstem.
Alongside surgery, standard treatments for brain cancer include radiotherapy and chemotherapy to kill rapidly dividing cells. These therapies have significant side effects and are not always effective at killing brain cancer cells. Side effects are a particular concern for children as their brain is still developing.
WEHI scientists are involved in finding new therapies for brain cancer that will improve quality of life and survival for people with this disease.
Brain cancer immunotherapy
Our researchers are investigating whether immune cells could be harnessed to fight brain cancer, an approach called ‘immunotherapy’.
Immunotherapy has led to significant advances in treating cancers such as melanoma and lung cancer. Our researchers are now investigating whether immunotherapy could be used to treat childhood DIPG and adult GBM.
Support for people with brain cancer
WEHI researchers are not able to provide specific medical advice to individuals. If you have brain cancer or are supporting somebody with this disease, please visit Cure Brain Cancer or the Brain Foundation or consult your medical specialist.
Researchers:
Super Content:
Carrie’s Beanies 4 Brain Cancer and WEHI have partnered to establish The Brain Cancer Centre.
The Brain Cancer Centre will bring together Australia’s brightest medical research minds to end brain cancer as a terminal illness.
Funding from Carrie Bickmore’s Beanies 4 Brain Cancer Foundation is helping to advance immunotherapy treatments
A novel approach to immunotherapy design could pave the way for new treatments for people with an aggressive form of brain cancer called glioblastoma.