- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Samir Taoudi
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Development of tau-specific therapeutic and diagnostic antibodies
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Immunotherapy

Immunotherapy is an innovative treatment that modulates the body’s immune system to fight disease.
Our researchers are using their knowledge of the immune system to develop immunotherapies for cancer and immune disorders.
Immunotherapy research at the Institute
Our researchers are:
- Discovering how immune cells respond to, and kill, tumour cells with the goal of finding new ways to manipulate this process to target cancer.
- Studying whether immune cells can be harnessed to treat brain cancer without triggering significant side effects.
- Investigating whether immune checkpoint inhibitors could improve treatment of people with certain types of lung, stomach and breast cancer.
- Examining natural killer cell biology to find ways to use these cells therapeutically, for example to treat melanoma.
- Developing immunotherapies to treat coeliac disease and type 1 diabetes.
What is immunotherapy?
Your immune system plays a vital role in protecting you from harmful organisms and substances. It can fight off bacteria and viruses that invade your body, and also destroy cancer cells that arise within your body.
Unfortunately, however, cancer cells often find ways to stop your immune system from eliminating them.
Immunotherapy can help boost the body’s immune system, enabling it to successfully fight off cancer cells. This type of immunotherapy – known as cancer immunotherapy – has been hailed as one of the biggest breakthroughs in cancer treatment in a generation.
In other cases, an overactive immune system can cause disease. Some people have an immune system that inappropriately responds to harmless substances such as gluten in food. This triggers immune illnesses such as coeliac disease.
In these cases, immunotherapy aims to specifically dampen or supress these abnormal immune responses to treat the underlying cause of disease and reduce symptoms.
T cell therapy
Our researchers are working on an innovative form of immunotherapy that harnesses the body’s own immune cells to kill cancer cells.
Called CAR-T cell therapy, this treatment involves isolating a patient’s immune cells, engineering them to become ‘super killer cells’ and then reinfusing them into the patient to fight their cancer.
This technique has been successfully used to treat blood cancers but has had mixed results in solid tumours.
Our researchers are studying the biological factors contributing to the success and side effects of CAR-T cells. This work will help inform a better design and safer delivery methods.
Brain cancer is a particular focus for this work, with our researchers are aiming to find an optimum design for CAR-T cell therapy that can kill brain tumour cells with limited side effects.
Immune checkpoint inhibitors
Immune checkpoints are the brakes of the immune system, allowing immune responses to be switched off after a threat – such as a virus infection – is over. Without these brakes, uncontrolled immune responses can cause inflammatory tissue damage and autoimmune disease.
However, some cancer cells take advantage of these brakes, using them to switch off immune cells that would otherwise destroy the tumours.
Immune checkpoint inhibitors release the brakes, enabling immune cells to attack tumours.
Some of the most exciting new cancer therapies are known as anti-PD1 and anti-CTLA4 immunotherapies. Our researchers are studying these immunotherapies in several preclinical models of cancer, including lung, stomach and breast cancer.
This research could help to identify patients who may benefit from these immunotherapies and lead to future clinical trials aimed at improving patient outcomes.
Natural killer cell therapy
Natural killer cells are part of the body’s first line of defence against infections and cancer.
Our researchers are studying how natural killer cells fight cancer, with the aim of harnessing these cells to specifically detect and destroy the disease.
They have discovered a protein – called CIS – that acts as a brake to dampen natural killer cell activity. Blocking CIS increases anti-tumour activity and reduces melanoma growth in preclinical models.
Our researchers are now partnering with a drug company to develop inhibitors of CIS that may ultimately help patients fight cancer with their own immune system.
Immunotherapy for immune disorders
Immunotherapy can be used to dampen down harmful immune responses, for example in:
- coeliac disease, which is caused by an inappropriate immune reaction to the gluten protein found in wheat, rye and barley
- type 1 diabetes, which is caused by the immune system wrongly attacking healthy cells in the pancreas
Our researchers are performing a clinical trial pairing the diabetes immunotherapy with an immunosuppressive agent to test if the combination will slow the progression of type 1 diabetes.
Researchers:
A Cure Brain Cancer Foundation fellowship will support Dr Ryan Cross to undertake research into new immunotherapy treatments for brain cancer in adults and children.
Our bodies are constantly fighting off the development of cells that lead to tumours. Researchers have now discovered a protein ‘brake’ within Natural Killer cells that controls their ability to destroy their target tumour cells.
Funding from Carrie Bickmore’s Beanies 4 Brain Cancer Foundation is helping to advance immunotherapy treatments