- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Drug discovery

Drug discovery research seeks to understand how disease develops at a molecular level, identifying ‘targets’ for analysis. Drug discovery uses the identified molecular target to test drug-like chemicals, and realise disease impacts. The testing and realisation are the initial steps in the drug discovery process.
Rational design and scientific validation improve the properties of these drug-like ‘hits’ to create therapeutic drugs ready to treat disease in patients. The path of drug discovery, from initial understanding, through testing and development of a drug is referred to as the drug discovery process.
The journey from scientific discovery to drug treatment is gradual. Often it takes decades for a laboratory-based discovery to be turned into a treatment that can be used in patients.
What is high throughput screening?
High throughput screening is a gold standard for discovering ‘hits’ during the early stages of drug discovery. The technology uses automation to test hundreds of thousands of drug-like chemicals against a biological target. The ‘hits’ discovered using high throughput screening provide a starting point for the development of new drugs.
National Drug Discovery Centre
In 2020, WEHI expanded its early stage drug discovery capabilities, previously leveraged in various projects including venetoclax, to establish the National Drug Discovery Centre (NDDC).
The NDDC benefits from the latest in advanced robotic ultra-high throughput screening, addressing a critical early challenge in the drug discovery pipeline. Its quality, capabilities and scale are comparable to global pharmaceutical industry standards, with the flexibility and innovation of academia.
The NDDC is embedded within world-class biology research at WEHI, positioning it to deliver first-in-class, innovative drug discovery projects. The NDDC is active from target discovery to preclinical candidate stage.
The NDDC has a large portfolio of projects, both completed and ongoing, that includes:
- proprietary WEHI projects
- academic collaborations with other research institutions and universities
- collaborative projects with industry partners (biotech and pharma) in the context of strategic alliances or simple fee-for-service models; and
- projects subsidised by the Australian Government, specifically supporting Australian scientists from academic institutions and small and medium enterprises (SMEs)
Business models are flexible and adapted to the needs of each project and partner. Interested parties should contact Leigh Coultas, Business Development Manager, for an evaluation of how the NDDC could help.
National Drug Discovery Centre funding
In 2019, the Australian Government announced $25 million in funding and the Victorian Government provided $18 million to help establish the National Drug Discovery Centre at WEHI. These investments support the expansion of the NDDC, opening it to the global medical research community and industry partners, and enabling the retention and recruitment of highly-skilled scientists to operate the facility.
Continued support from the Australian Government through the Medical Research Future Fund (MRFF) provides an opportunity for select Australian academic and SME researchers to access the NDDC’s screening capability at a highly subsidised cost, through a competitive, peer-reviewed process.
The funding builds upon WEHI’s own $32.1 million investment in the centre, as well as previous Victorian Government support and generous donations from AWM Electrical, Mr Mike Fitzpatrick AO and Ms Helen Sykes AM.
Subsidised screening at the National Drug Discovery Centre
A number of subsidised screens are available each year for eligible Australian researchers through the support of a grant from the Australian Government Medical Research Future Fund. This subsidy is available to users from Australia’s academic and bio-pharmaceutical sectors on a fully staffed basis. As a prerequisite, applicants will need to have established a working assay that is HTS-compatible and has been demonstrated in 96-well format.
An expert review panel meets periodically to select the successful applications for subsidised screens.
Learn more about how to apply.
Melbourne Information Session
- Video: Professor Guillaume Lessene and Dr Hélène Jousset provide an overview of the NDDC and application process for MRFF-funded subsidised screening.
- Download the presentation
Stay informed
Sign up here to stay up to date with the latest news from the National Drug Discovery Centre.
Researchers:
Super Content:
The NDDC enables medical researchers to access ultra-high throughput screening, fast tracking scientific discoveries into new medicines.
The Australian Government has committed to $25 million in funding to enhance drug discovery capabilities at the Institute’s Drug Discovery Centre.
Institute researchers have developed a compound that may be the first step toward a new class of antimalarial drugs.
Professor Andrew Roberts and collaborators have shown that patients with an advanced form of leukaemia can achieve complete remission with a novel tablet treatment.
A landmark deal from the partial sale of royalty rights in anti-cancer treatment venetoclax secures the Institute’s place for innovation in medical research.