- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Fut8 Sugar coating immuno oncology
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Novel therapy for drug-resistant cancers
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Selective JAK inhibition: mimicking SOCS activity
- Targeting minor class splicing
- Treating Epstein-Barr virus associated malignancies
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Anne Voss
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Marnie Blewitt
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Bob Anderson
- Dr Brad Sleebs
- Dr Diana Hansen
- Dr Drew Berry
- Dr Emma Josefsson
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Hélène Jousset Sabroux
- Dr Ian Majewski
- Dr Ian Street
- Dr Jacqui Gulbis
- Dr James Vince
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kate Sutherland
- Dr Kelly Rogers
- Dr Leanne Robinson
- Dr Leigh Coultas
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Misty Jenkins
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rhys Allan
- Dr Samir Taoudi
- Dr Sant-Rayn Pasricha
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Ms Samantha Ludolf
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jason Tye-Din
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- 6 cysteine proteins key mediators between malaria parasites and human host
- A balancing act of immunity: autoimmunity versus malignancies
- Activating https://www.wehi.edu.au/node/add/individual-student-research-page#Parkin to treat Parkinson’s disease
- Analysing single cell technologies to understand breast cancer
- Bioinformatics methods for detecting and making sense of somatic genomic rearrangements
- Characterising new regulators in inflammatory signalling pathways
- Computational melanoma genomics
- Control of human lymphocyte cell expansion in complex immune diseases
- Deciphering biophysical changes in red blood cell membrane during malaria parasite infection
- Deciphering the signalling functions of pseudokinases
- Deep profiling of blood cancers during targeted therapy
- Determining the mechanism of type I cytokine receptor triggering
- Differential expression analysis of RNA-seq using multivariate variance modelling
- Discovering new genetic causes of primary antibody deficiencies
- Discovery of novel drug combinations for the treatment of bowel cancer
- Drug targets and compounds that block growth of malaria parasites
- Effects of nutrition on immunity and infection in Asia and Africa
- Enabling deubiquitinase drug discovery
- Epigenetic drivers of immune cell function
- Epigenetic regulation of systemic iron homeostasis
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Fatal attraction: how apoptotic pore assembly is governed during mitochondrial cell death
- Genomic instability and the immune microenvironment in lung cancer
- How do T lymphocytes decide their fate?
- How the epigenetic regulator SMCHD1 works and how to target it to treat disease
- Human lung protective immunity to tuberculosis: host-environment systems biology
- Human monoclonal antibodies against malaria infection
- Identifying novel treatment options for ovarian carcinosarcoma
- Inflammasome activation in autoinflammatory disease
- Investigating mechanisms of cell death and survival using zebrafish
- Investigating microbial natural products with anti-protozoal activity
- Investigating the role of mutant p53 in cancer
- Investigating the role of platelets in motor neuron disease
- Mapping DNA repair networks in cancer
- Molecular mechanisms controlling embryonic lung progenitor cells
- Nanobodies against malaria
- Neutrophil heterogeneity in inflammation
- New approaches to treat cancer and inflammatory disease using the ubiquitin system
- Next generation CRISPR screens using iPSC
- Novel cell death and inflammatory modulators in lupus
- Programming T cells to defend against infections
- Restraining cytokine-receptor signalling in myeloproliferative neoplasms
- Screening for regulators of jumping genes
- Statistical analysis of genome-wide chromatin organisation using Hi-C
- Statistical analysis of trapped-ion-mobility time-of-flight mass spectrometry proteomics data
- Structure and function of E3 ubiquitin ligases
- Target identification of potent antimalarial agents
- The mitochondrial TOM complex in neurodegenerative disease
- The molecular mechanisms underlying Kir4.1 activity in gliomas
- The role of differential splicing in the genesis of breast cancer
- Uncovering the roles of long non-coding RNAs in human bowel cancer
- Understanding malaria infection dynamics
- Understanding the function of the E3 ligase Parkin in Parkinson’s disease
- Understanding the molecular basis of chromosome instability in gastric cancer
- Utilising pre-clinical models to discover novel therapies for tuberculosis
- School resources
- Frequently asked questions
- Student profiles
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Associate Professor Ruth Kluck
left-column
headshot-wrapper

the-headshot-content
Associate Professor
Ruth
Kluck
BSc PhD QLD
Laboratory Head
Division:
My laboratory is investigating how cells die via a process called apoptosis.
Apoptotic cell death is a normal process that helps remove excess or damaged cells. When apoptotic cell death goes wrong, the results are often cancer or autoimmune diseases.
My laboratory is interested in the proteins inside cells that orchestrate apoptosis. We are focusing on how the killer proteins, BAX and BAK, cause organelles called mitochondria to be leaky and kill the cell. Understanding this process is critical to developing new treatments that either enhance or block apoptosis in cancer and autoimmune disease.
Research interest
Our research program uses biochemical, cell biological and structural approaches to examine how the BCL-2 protein family regulates the mitochondrial pathway of apoptosis.
We are particularly interested in how two pore-forming BCL-2 family members, BAX and BAK, undergo conformation change and generate pores in the mitochondrial outer membrane. The goal of our research is to identify new means of specifically regulating apoptotic cell death in cancer and other diseases.
We have found that following major conformation changes, both BAX and BAK form unusual symmetric homodimers that act as the basic unit of the apoptotic pore, and are using different strategies to determine how dimers form clusters that disrupt the membrane.
We also discovered that BAK can be activated by antibodies, and are testing whether these antibodies can be delivered into cancer cells to directly trigger BAK-mediated apoptosis.
Student research opportunity
Institute researchers have discovered a new way of triggering cell death, in a finding that could lead to drugs to treat cancer and autoimmune disease.
This two-part animation from WEHI.TV explains the type of programmed cell death called apoptosis, and how the anti-cancer drug venetoclax works by forcing susceptible cells into this process.