- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Survival protein may prevent collateral damage during cancer therapy
25 November 2020
WEHI researchers have identified a protein that could protect the kidneys from ‘bystander’ damage caused by cancer therapies.
from damage caused by cancer therapies.
Art of Science image: Order, Disorder by Dr Michael Roy
The ‘cell survival protein’, called BCL-XL, was required in laboratory models to keep kidney cells alive and functioning during exposure to chemotherapy or radiotherapy. Kidney damage is a common side effect of these widely used cancer therapies, and the discovery has shed light on how this damage occurs at the molecular level.
Inhibiting BCL-XL has been proposed as a potential new cancer therapy, and this research also revealed that in contrast to genetic deletion of BCL-XL, BCL-XL-inhibitory agents can be safely used in laboratory models alone or in combination with other cancer therapies. The research was led by Dr Kerstin Brinkmann, Dr Stephanie Grabow and Professor Andreas Strasser, and published today in the EMBO Journal.
At a glance
- BCL-XL is a ‘survival’ protein that keeps cells alive and has also been identified as a promising target for anti-cancer agents.
- Our researchers have discovered that BCL-XL protects the kidneys from ‘collateral’ damage during cancer therapy.
- The research also revealed that a research compound that inhibits BCL-XL could be safely used in laboratory models, both alone or in combination with other cancer therapies.
New strategy to investigate BCL-XL
into the role of BCL-XL in adult cells.
BCL-XL is a widespread ‘survival’ protein, found in many different cell types – but also at high levels in a range of cancers. More than a decade ago, researchers at WEHI and overseas identified BCL-XL as a vital survival factor in oxygen-carrying red blood cells, and platelets, the latter critical for blood clotting. However, the importance of BCL-XL in other cells of adults had not been investigated, said Dr Grabow.
“To address this, we developed a new laboratory model in which the BCL-XL protein was permanently removed from all cells other than blood cells,” Dr Grabow said.
Using this strategy, the team explored whether BCL-XL helped cells to withstand a particularly stressful event – exposure to chemotherapy or radiotherapy, Dr Brinkmann said.
“We discovered that without BCL-XL, kidney cells were highly susceptible to damage by both chemotherapy and radiotherapy. Healthy kidneys remove waste from our body, creating urine, but also maintain healthy numbers of red blood cells by releasing a hormone called erythropoietin (EPO). Without BCL-XL, the kidneys could not perform either of these vital functions,” Dr Brinkmann said.
“Kidney damage is a common side effect of anti-cancer therapies. Our discovery is the first to highlight the role of BCL-XL in protecting kidneys from this damage and may lead to better approaches to reduce this side effect for people undergoing cancer treatment,” she said.
Targeting BCL-XL to treat cancer
Cancer cells are kept alive in our bodies by high levels of survival proteins, such as BCL-XL. New BH3-mimetic drugs that inhibit specific survival proteins have shown great promise in clinical trials. Because BCL-XL is found at high levels in many cancer cells, there has been considerable interest in this protein as a potential target for new anti-cancer agents, Professor Strasser said.
“Unfortunately, early studies showed that administering a BCL-XL inhibitory drug caused a loss of platelets, a serious side effect. To avoid this, the drug could only be administered at levels that, on their own, are not sufficient to efficiently kill cancer cells,” he said.
The team investigated whether short-term inhibition of BCL-XL could be safely combined with other anti-cancer agents – in the hope that inhibition of BCL-XL may make cancer cells more susceptible to chemotherapy or radiotherapy.
“Because we had seen that permanently removing BCL-XL made kidney cells vulnerable to damage, we predicted that this would also occur if BCL-XL were only inhibited for a short period in a laboratory model,” Professor Strasser said.
“We were thrilled to discover that a research compound that inhibits BCL-XL could be administered alone, or at a low dose even in combination with common chemotherapy drugs or radiation therapy without any evidence of kidney damage or other unwanted side effects.
“This suggests a potentially safe way to use candidate drugs that inhibit BCL-XL to treat cancer in clinical trials, even in combination with standard cancer therapies,” Professor Strasser said.
The research was supported by the Deutsche Krebshilfe (German Cancer Aid), Leukaemia Foundation Australia, Lady Tata Memorial Trust, University of Melbourne, Cancer Therapeutics CRC, The estate of Anthony (Toni) Redstone OAM, Cure Brain Cancer Australia, Cancer Council of Victoria, Australian Department of Education, Skills and Employment, Leukemia and Lymphoma Society, NHMRC Australia and the Victorian Government.
WEHI Authors: Dr Kerstin Brinkmann, Dr Stefan Glaser, Dr Verena Wimmer, Dr Duong Nhu, Dr Lachlan Whitehead, Dr Alex Delbridge, Professor Guillaume Lessene, Associate Professor Marco Herold, Dr Gemma Kelly, Dr Stephanie Grabow, Professor Andreas Strasser
Read the full EMBO Journal article
Media inquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.
Institute researchers have discovered that targeting a cell ‘survival’ protein could help treat some lymphomas, including those that are resistant to existing therapies.
Single cell imaging techniques are allowing researchers to develop complex mathematical models to understand how cancer cells respond to chemotherapy.
This two-part animation from WEHI.TV explains the type of programmed cell death called apoptosis, and how the anti-cancer drug venetoclax works by forcing susceptible cells into this process.