- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
Novel compound sparks new malaria treatment hope
5 March 2020
A novel class of antimalarial compounds that can effectively kill malaria parasites has been developed by Australian and US researchers.
Dr David Olsen and Dr Paola Favuzza were the lead
authors of the study.
In preclinical testing, the compounds were effective against different species of malaria parasites, including the deadly Plasmodium falciparum, and at multiple stages of the parasite lifecycle. The compounds target a previously unexplored parasite pathway and could overcome existing issues of parasite drug resistance, an ongoing and increasingly urgent problem.
The researchers hope that drugs based on these early compounds will soon enter phase 1 clinical trials.
The research, a collaboration between the Walter and Eliza Hall Institute and global pharmaceutical company MSD, was published in Cell Host & Microbe.
Exciting new development
Professor Alan Cowman, an international malaria expert and deputy director at the Walter and Eliza Hall Institute, led the Australian research team, alongside MSD scientist and US team lead Dr David Olsen.
“This is an exciting new class of antimalarial compounds that could fill a critical and widening gap in our efforts to control and eliminate malaria," Professor Cowman said.
"In preclinical testing, the lead compound WM382 inhibited growth of the malaria parasite in the host and prevented transmission back to the mosquito. These results indicate that this class of compounds is very promising as a potent new treatment for malaria. We hope that drugs based on these compounds will soon progress to human phase I clinical trials."
WM382 not only killed malaria parasites in the blood, it also killed parasites in the liver and prevented parasites in the blood being transmitted to mosquitoes, he said.
“This novel class of compounds has the potential to not only cure people with malaria, but also prevent transfer of the parasite to the mosquito and, consequently, halt further transmission of the disease."
"This is an exciting prospect, as current antimalarial drugs kill the malaria parasite in the blood but do not fully prevent transmission," Professor Cowman said.
Video: Red blood cells infected with malaria parasites.
Video: Red blood cells infected with malaria parasites and treated with novel antimalarial compound. The compound blocks the parasite from escaping the host cells, a process called egress.
An emerging crisis
A major problem with current antimalarial drugs is that malaria parasites evolve and develop resistance to the drugs over time.
“Much like antibiotic resistance, malaria resistance is an emerging crisis," Professor Cowman said.
"Effective antimalarial drugs are not just critical for the infected individual, they are also critical for breaking the cycle of infection and an important way for us to reach our goal of eliminating malaria from highly endemic regions."
Once parasite resistance emerges, it can quickly spread through a region, or even globally. “In some areas, parasites are resistant to all three frontline malaria treatments. So novel drugs are urgently needed," he said.
In recent years, the focus of international efforts to develop new malaria drugs have centred on two criteria; they must target a novel process or pathway to avoid pre-existing resistance to current drugs; and they must be active at multiple stages of the parasite lifecycle.
Professor Cowman said WM382 successfully met both of these criteria.
“An exciting feature of WM382 is that it kills the malaria parasite in a very different way to current antimalarial drugs. In preclinical testing, malaria parasites that were resistant to the lethal effects of current antimalarial drugs were fully susceptible to WM382."
"It was also very difficult to induce resistance to this compound in malaria parasites in the lab. This is uncommon in drug discovery, and is a positive sign, as it suggests it will be harder for malaria parasites to acquire resistance in the field,” Professor Cowman said.
Combatting malaria
parasite. The new compound can prevent transfer of the
parasite to the mosquito and halt further transmission
of the disease.
More than 600,000 people – predominantly pregnant women and children under the age of five – die from malaria every year. According to the World Health Organization, one child in Africa dies from malaria every two minutes.
The malaria parasite has a complex lifecycle. Humans are infected by the bite of an infected mosquito. The parasites migrate to the liver to grow and divide undetected. It is then released into the blood, where it can be transmitted back to a mosquito and passed on to their next victim.
Professor Cowman said WM382 targeted two crucial enzymes in the malaria parasite, blocking their function and killing the parasite. “This compound has a two-pronged approach to disable the parasite, which helps explain its potency and effectiveness,” Professor Cowman said. “It targets plasmepsin IX (PMIX) and plasmepsin X (PMX), two ‘master regulators’ that are critical for parasite survival. PMIX and PMX are involved in multiple stages of the parasite lifecycle and, because the compound hits both these targets, it is harder for parasites to develop resistance.”
The research was a multidisciplinary, international collaboration between researchers with expertise in malaria biology, medicinal chemistry and drug development. Research at the Walter and Eliza Hall Institute was led by Professor Cowman, with Dr Paola Favuzza, Associate Professor Justin Boddey, Dr Brad Sleebs and colleagues. The MSD team was headed by Dr Olsen, with Dr Manuel de la Ruiz and colleagues. The research was funded by the Wellcome Trust (UK), Australian National Health and Medical Research Council and the Victorian Government.
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.
The NDDC enables medical researchers to access ultra-high throughput screening, fast tracking scientific discoveries into new medicines.
We have developed the first malaria vaccine that can be tailored to match many different strains of malaria.
We are a member of the Asia Pacific Malaria Elimination Network (APMEN), an international collaborative network working towards eliminating malaria in the Asia-Pacific region.
Visualisation of the parasite infection inside a pregnant female mosquito.
The institute's malaria research team is homing in on a new target for malaria treatment