- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Samir Taoudi
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
New model mimics human tumours for accurate testing of cancer drugs
12 October 2018
and Dr Gemma Kelly.
Walter and Eliza Hall Institute researchers have genetically engineered a new laboratory model that enables accurate testing of anti-cancer drugs by mimicking the complexity of human cancers.
Using this advanced laboratory model, researchers will be able to discover the safest and most effective ways to use promising drugs called MCL-1 inhibitors in the clinic.
The work was led by PhD student Ms Margs Brennan, Dr Gemma Kelly and Associate Professor Marco Herold, and has been published in the journal Blood.
At a glance
- Researchers have genetically engineered a laboratory model for testing the effectiveness of new anti-cancer drugs called MCL-1 inhibitors.
- The model is the best available for preclinical testing of MCL-1 inhibitors and will help to identify the right patients for these drugs.
- MCL-1 inhibitors work by targeting a protein essential for the sustained growth of many blood cancers, as well as solid tumours including breast cancers and melanoma.
Attacking cancer’s Achilles’ heel
MCL-1 is a protein essential for the sustained growth of many blood cancers, as well as some solid tumours including breast cancer and melanoma. Dr Kelly said this role in promoting cancer cell survival makes MCL-1 an attractive therapeutic target.
“MCL-1 allows cancer cells to evade the process of programmed cell death, or apoptosis, that normally removes damaged or unwanted cells from the body.
“Because so many cancer cells depend on MCL-1 for survival, it is like cancer’s Achilles’ heel – if we can attack this weak point with a drug, we may be able to successfully trigger apoptosis and destroy cancer cells for good,” Dr Kelly said.
A highly potent inhibitor of MCL-1, called S63845, has been developed by pharmaceutical company Servier. While the drug is known to trigger cancer cell death in the laboratory, until now there was no accurate tool to predict how the drug would work in patients.
Rigorous testing for targeted clinical use
In this new study, researchers genetically engineered a model to accurately evaluate MCL-1 inhibitors. The model is the best available for laboratory-based studies evaluating S63845, closely predicting how cancer patients will respond to the drug in the clinic.
Ms Brennan said the laboratory model will allow researchers to find the best ways to match MCL-1 inhibitors with the right cancer patients.
“Using this model, we can get a handle on key questions such as which types of cancers are sensitive to MCL-1 inhibitors, which patients will benefit, which combination treatments will be most effective and the best dosing regimens to use.
“Working with laboratory models that closely mimic human cancer allows us to gain as much knowledge about MCL-1 inhibitors as we can before the drugs even reach the clinic. This lays the groundwork for future clinical trials, hopefully improving treatment options for patients,” she said.
Powerful potential for treatments
To demonstrate the potential of this new research tool, the researchers used it to test whether MCL-1 inhibitors could effectively treat a preclinical model of lymphoma.
“We found that treatment with the MCL-1 inhibitor S63845 led to remission in six out of 10 cases of lymphoma,” Associate Professor Herold said. “This was achieved without significant side effects, suggesting that S63845 will be safe and effective in the clinic.”
Associate Professor Herold said MCL-1 inhibitors could be particularly powerful when combined with standard treatments like chemotherapy.
“MCL-1 allows cancer cells to resist treatments like chemotherapy that would otherwise trigger cell death. In our preclinical model, we found that combining an MCL-1 inhibitor with chemotherapy led to remission in almost all cases of lymphoma,” he said.
The team is now using their laboratory model to test whether MCL-1 inhibitors are effective for other types of blood cancers. They will also share the model with other members of the scientific community studying MCL-1 inhibitors in different disease contexts.
“Our laboratory model will be invaluable for future preclinical work determining the best uses of MCL-1 inhibitors for treating human disease,” Associate Professor Herold said.
This work was supported by the Australian National Health and Medical Research Council, Servier Laboratories, the Leukemia and Lymphoma Society of America, Cancer Council Victoria, the Victorian Cancer Agency, the Leukaemia Foundation, the Estate of Anthony (Toni) William Redstone OAM, the Craig Perkins Cancer Research Foundation, Mr Malcolm Broomhead, the Australian Government and the Victorian State Government.
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
A new compound has been shown to block a protein essential for the growth of many cancers, including melanoma, blood, breast and lung cancers.
A signalling molecule called interleukin-11 is a potential new target for anti-cancer therapies
In a world first, Institute scientists and collaborators have discovered a new type of anti-cancer drug that can put cancer cells into a permanent sleep, without the harmful side-effects caused by conventional cancer therapies.
Check out our YouTube channel: latest WEHI.TV animations, videos of our public lectures, news releases and staff profiles.
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.