- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Sweet discovery could drive down inflammation, cancers and viruses
12 May 2022
A WEHI-led study has identified a new enzyme involved in controlling cell death, in findings that could lead to better treatment options for a range of inflammatory conditions, cancers and viruses.
The discovery offers another way to regulate the cell death process for inflammatory diseases like psoriasis and inflammatory bowel disease – conditions that occur due to excessive cell death in the body – and could also help in future to reduce the severity of viruses like COVID-19.
At a glance
- Australian-Swiss research discovers a new way to control the cell death process.
- Study reveals how an enzyme uses a ‘sugar tag’ to prevent excessive cell death.
- The findings could lead to better treatment options for inflammatory-driven infections, viruses and cancers.
Inflammatory cell death is an important part of the body’s immune response. But when uncontrolled, it can lead to harmful amounts of inflammation in otherwise healthy organs and tissue, which fuels inflammatory disease.
The WEHI-led collaboration, involving researchers from Zürich University, the University of Melbourne, the Hudson Institute of Medical Research and Monash University found an enzyme known as tankyrase-1 uses a ‘sugar tag’ to prevent excessive cell death.
John Silke
This discovery could have implications for patients suffering from chronic inflammatory diseases driven by unregulated cell death, such as psoriasis and rhuematoid arthritis.
It could also impact patients suffering from inflammatory cancers, such as those in the bowel, where there is too little cell death.
Published in Science Advances, the findings could help lead to better treatment options for infections, chronic inflammatory diseases and some cancers in the future.
The research was led by WEHI researchers Dr Lin Liu, Dr Najoua Lalaoui and Professor John Silke.
Temple of doom
The new research focused on a protein called TNFR1, which exists on the surface of our cells and can induce a protein complex known to cause cell death.
Cells have many mechanisms to fight pathogens, which viruses try to interfere with in order to stay alive. Our cells will trigger the TNFR1 death complex if they can detect pathogenic interference.
Professor John Silke likened this to a ‘temple of doom’.
"Like how the ‘temple of doom’ tries to trap Indiana Jones, the virus is the less fortunate treasure hunter in this scenario,” he said.
"Our cells have evolved to the point where they will kill themselves when they detect a pathogen, to protect the body.
"Since pathogens such as viruses need a living cell to replicate in, the ‘temple of doom’ created by our cells is a very effective way to stop a virus infection in its tracks.”
Crucial sugar tag
Lead author Dr Lin Liu said the team leveraged mass spectrometry technology to identify the enzyme known as tankyrase-1 within the TNFR1 death complex.
"By isolating the TNFR1 death complex from the cell, we were able to show exactly how tankyrase-1 impacted cell death, in findings that took us by surprise,” Dr Liu said.
While we’ve known for many years that tankyrase-1 plays a role in fuelling cell growth, our study is the first to link this enzyme to TNFR1-mediated inflammatory cell death.”
Researchers found the enzyme plays a key role in the removal of the TNFR1 death complex.
“We found tankyrase-1 attaches sugar molecules called ribose to components of the TNFR1 death complex, which acts as a tag to trigger the removal of the protein complex,” Dr Liu said.
“This sugar tag is essential to removing this complex and preventing excessive cell death.”
Enhancing therapeutic potential
Excessive virus-induced cell death has also been linked to disease severity.
This research could help reduce the severity of viruses
like COVID-19 in the future
Using a SARS-CoV-2 protein, the team was able to show how some viruses can inadvertently trigger the death complex and cell death process.
Dr Najoua Lalaoui said the findings could lead to ways of reducing the severity of some viruses in the future.
“In healthy, uninfected cells, tankyrase-1 attaches the sugar group onto the TNFR1 death complex to stop its killing abilities,” she said.
“But during infections the virus produces a protein that can remove the sugar group, which helps unleash the killing potential of the complex.”
Tankyrase-1 is also known to play a role in some cancers, with drugs that inhibit its function currently in pre-clinical trials.
Dr Lalaoui said discovering the enzyme’s role in cell death could lead to better treatment options for patients suffering from some inflammatory cancers.
"We’re suggesting anti-tankyrase drugs might in future be specifically targeted to cancers that express TNF, as the drugs would then both stop cancer cells growing and trigger cell death to potentially make them more effective.
"Our findings are laying the scientific foundation that could lead to improved future treatments for not only some cancers, but also chronic inflammatory conditions.”
The research was supported by the NHMRC, the Victorian Government, the Australian Government, the Victoria Cancer Agency, the Independent Research Institutes Infrastructure Support Scheme, the Kanton of Zurich and the Swiss National Science Foundation.
WEHI authors: Lin Liu, Jarrod Sandow, Andre Samson, Natasha Silke, Tobias Kratina, Marcel Doerflinger, Zhaoqing Hu, Emma Morrish, Diep Chau, Andrew Kueh, Cheree Fitzibbon, Marc Pellegrini, Andrew Webb, Najoua Lalaoui and John Silke.
DOI: 10.1126/sciadv.abh2332
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Institute researchers have been recognised for their contributions to the field of cell death research.
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.