- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Progress towards new treatments for tuberculosis
13 July 2021
Boosting the body’s own disease-fighting immune pathway could provide answers in the desperate search for new treatments for tuberculosis.
will lead to better treatments for tuberculosis
Tuberculosis still represents an enormous global disease burden and is one of the top 10 causes of death worldwide.
Led by WEHI’s Dr Michael Stutz and Professor Marc Pellegrini and published in Immunity, the study uncovered how cells infected with tuberculosis bacteria can die, and that using new medicines to enhance particular forms of cell death decreased the severity of the disease in a preclinical model.
At a glance
- Researchers were able to demonstrate that cells infected with tuberculosis bacteria have functional apoptosis cell death pathways, and showed their importance in combatting severe disease.
- Using preclinical models, researchers were able to pinpoint the critical apoptotic pathways as targets for new therapies, whereby infected cells can be killed by drugs called IAP inhibitors.
- The study demonstrated that host-directed therapies were viable for infections such as tuberculosis, which is important in the era of extensive antibiotic resistance.
Fighting antibiotic resistance
Tuberculosis is caused by bacteria that infect the lungs, spreading from person to person through the air. A challenge in the fight against tuberculosis is that the bacteria that cause the disease have developed resistance to most antibiotic treatments, leading to a need for new treatment approaches.
Tuberculosis bacteria grow within immune cells in the lungs. One of the ways that cells protect against these ‘intracellular’ pathogens is to undergo a form of cell death called apoptosis – destroying the cell as well as the microbes within it.
Using preclinical models, researchers sequentially deleted key apoptosis effectors, to demonstrate their roles in controlling tuberculosis infections. This demonstrated that a proportion of tuberculosis-infected cells could die by apoptosis – opening up new opportunities for controlling the disease.
Using host-directed therapies to reduce disease burden
Dr Stutz said researchers then tested new drugs that force cells to die. This revealed that a drug-like compound that inhibits cell death-regulatory proteins called IAPs could promote death of the infected cells.
“When we treated our infection models with this compound, we were able to significantly reduce the amount of tuberculosis disease,” he said.
“The longer the treatment was used, the greater the reduction of disease.”
The research team was able to replicate these results using various different IAP inhibitors.
“Excitingly, many of these compounds are already in clinical trials for other types of diseases and have proven to be safe and well-tolerated by patients,” Dr Stutz said.
“We predict that if these compounds were progressed for treating tuberculosis, they would be most effective if used alongside existing antibiotic treatments.”
Opening the door to new treatment methods
Professor Marc Pellegrini said until now, antibiotics were the only treatment for tuberculosis, which were limited in their application due to increasing antibiotic resistance.
“Unlike antibiotics, which directly kill bacteria, IAP inhibitors kill the cells that the tuberculosis bacteria need to survive,” he said.
“The beauty of using a host-directed therapy is that it doesn’t directly target the microbe, it targets a host process. By targeting the host rather than the microbe, the chances of resistance developing are incredibly low.”
The team hope the research will lead to better treatments for tuberculosis.
“This research increases our understanding of the types of immune responses that are beneficial to us, and this is an important step towards new treatments for tuberculosis, very few of which have been developed in the last 40 years,” Dr Stutz said.
“We have demonstrated that host-directed therapies are viable for infections such as tuberculosis, which is particularly important in the era of extensive antibiotic resistance.”
This work was made possible with funding from the National Health and Medical Research Council, the Sylvia and Charles Viertel Charitable Foundation, The Harry Secomb Trust and the Victorian Government.
Read the research paper in Immunity
WEHI authors
Michael Stutz, Cody Allison, Samar Ojaimi, Simon Preston, Marcel Doerflinger, Philip Arandjelovic, Lachlan Whitehead, Stefanie Bader, Daniel Batey, Marie-Liesse Asselin-Labat, Marco Herold, Andreas Strasser, Marc Pellegrini.
Media inquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Want to be informed of our most exciting discoveries? Subscribe to our quarterly newsletter, Illuminate.
A newly discovered gene could hold the key to treating and potentially controlling HIV, hepatitis and tuberculosis.
Sylvia and Charles Viertel Fellowship to support Professor Marc Pellegrini's research into HIV, tuberculosis and hepatitis B