- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
Possible link between rotavirus vaccine and decline in type 1 diabetes
23 January 2019
A drop in the number of young children diagnosed with type 1 diabetes could be associated with the introduction of routine rotavirus vaccination of Australian infants, according to a new study by Melbourne researchers.
'islets' in the pancreas (shown in purple) are destroyed
by a misdirected immune response.
The researchers investigated the number of Australian children diagnosed with type 1 diabetes from 2000 to 2015 and found that type 1 diabetes diagnoses in children aged 0-4 years declined from 2007 – the year that rotavirus vaccine was introduced as a routine infant vaccination.
This is the first time the rate of type 1 diabetes in young children in Australia has fallen since the 1980s. While not conclusively linking the rotavirus vaccine with protection against type 1 diabetes, the discovery builds on earlier research suggesting natural rotavirus infection may be a risk factor for type 1 diabetes.
The study, a collaboration led by the Murdoch Children’s Research Institute and Walter and Eliza Hall Institute clinician scientists, was published in JAMA Pediatrics today.
At a glance
- The number of children diagnosed with type 1 diabetes has steadily increased in Australia since the 1980s, but the reasons for this have been poorly understood.
- Melbourne researchers identified the first fall in type 1 diabetes in young Australian children born after 2007.
- The fall in type 1 diabetes incidence in young children coincided with the introduction of the rotavirus vaccine as a routine infant vaccination. This follows on from earlier research implicating rotavirus infection in children as a risk factor for developing type 1 diabetes.
Decline in type 1 diabetes
Since the 1980s, the incidence of type 1 diabetes has steadily increased in Australia and worldwide, but the reasons for this increase are poorly understood. Type 1 diabetes is a serious, lifelong autoimmune condition, in which the body’s immune system destroys cells in the pancreas that produce insulin, a hormone that controls the level of glucose in the blood.
has led a study revealing the rate of type 1 diabetes has fallen for
the first time in young children in Australia.
By investigating the number of Australian children diagnosed with type 1 diabetes each year since 2000, the research team observed that after 2007 the rate of type 1 diabetes decreased in children aged 0-4 years, said study lead Dr Kirsten Perrett from the Murdoch Children’s Research Institute.
“The significant decrease in type 1 diabetes that we detected in young children after 2007 was not seen in older children aged 5-14. This suggests the young children could have been exposed to a protective factor that didn’t impact older children,” Dr Perrett said.
“We observed the decline in the rate of type 1 diabetes in children born after 2007 coincided with the introduction of the oral rotavirus vaccine onto the Australian National Immunisation Program in 2007.”
The rotavirus vaccine is routinely given to Australian infants aged two and four months to protect them against a severe, potentially life-threatening form of diarrhoea.
Exploring the connection
Professor Len Harrison from the Walter and Eliza Hall Institute, who is the study senior author, said the discovery followed on from earlier research implicating rotavirus infection in the development of type 1 diabetes.
is a senior author on research suggesting a possible link between
rotavirus and type 1 diabetes.
“Twenty years ago our team revealed an association between the appearance of immune markers of type 1 diabetes in children and rotavirus infection. Subsequent studies in laboratory models suggested rotavirus infection of pancreatic cells can trigger an immune attack against the insulin-producing cells – similar to what occurs in type 1 diabetes,” he said.
“While not conclusive, our latest study suggests that preventing rotavirus infection in Australian infants by vaccination may also reduce their risk of type 1 diabetes. We will be continuing this research to look more closely at the correlation, by comparing the health records of young children with or without type 1 diabetes.
“At this stage we don’t yet know whether the reduction in type 1 diabetes is a permanent effect or transient, and it may only be relevant to Australian children,” Professor Harrison said.
The research was supported by the National Health and Medical Research Council, a Melbourne Children’s Clinician-Scientist Fellowship, a Murdoch Children’s Research Institute grant, the Colin North Diabetes Fund and the Victorian Government.
Dr Perrett and Professor Harrison hold honorary positions at the University of Melbourne.
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.
WEHI.TV animation: how insulin is normally produced in the body and how its production is destroyed in type 1 diabetes.
Our research has discovered stem cells in the adult pancreas that can be turned into insulin producing cells.
A landmark discovery about how insulin docks on cells could help in the development of improved types of insulin for treating both type 1 and type 2 diabetes.
Associate Professor Mike Lawrence and his team found venom extracted from a species of marine cone snail could hold the key to developing ‘ultra-fast-acting’ insulins, leading to more efficient diabetes treatments