- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Discoveries in red blood cell production and function
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Mother’s touch lingers in her child’s genes
23 November 2020
Mothers leave their mark on their children in many ways – and WEHI researchers have discovered a protein called SMCHD1 is involved in this ‘imprinting’ process.
and Ms Iromi Wanigasuriya have uncovered a new
way that mothers can impact gene expression in their
children.
SMCHD1 switches certain genes off, altering how a cell behaves. The new research has revealed that when an egg cell (or oocyte) is fertilised by a sperm, the egg cell’s SMCHD1 lingers within the developing embryo, switching off at least 10 different genes and impacting the embryo’s development – which could potentially have a lifelong impact on the offspring.
The research was published in eLife by a team led by Ms Iromi Wanigasuriya, Dr Quentin Gouil and Professor Marnie Blewitt, in collaboration with WEHI’s Associate Professor Matthew Ritchie, Dr Heather Lee from the University of Newcastle and Associate Professor Karla Hutt from Monash Biomedicine Discovery Institute.
At a glance
- Some genes have different expression, depending on whether they have been inherited from the mother or father – a phenomenon called genomic imprinting
- WEHI researchers have discovered that the protein SMCHD1 is involved in genomic imprinting, with protein from the mother lingering in an embryo and switching ten genes off
- The discovery sheds new light on how genomic imprinting occurs, and may reveal new clues to how SMCHD1 contributes to certain developmental and degenerative disorders.
Imprinted genes
We inherit all our genes from our parents – and there are a few genes that behave differently in offspring, depending on whether they are inherited from the mother or the father. This phenomenon is called ‘genomic imprinting’, and is seen in some genetic diseases, said Ms Wanigasuriya, who undertook the research as a PhD student at WEHI.
“Genomic imprinting occurs because of ‘epigenetic marks’ on DNA that impact how genes can be used,” she said. “When a sperm fertilises an egg, both cells’ DNA carries epigenetic marks from the parent to the child, which in some cases have been linked to long-term health impacts,” she said. “It is known that proteins found within the egg (proteins that we get from our mum) help to protect these imprinted genes during early embryo development. Therefore, these egg cell proteins can have either a long or a short-term impact on the health of the embryo.”.
Professor Blewitt’s research team has been studying the SMCHD1 protein, which uses epigenetic modification to ‘switch off’ or silence certain genes.
remaining in embryos as the cells divide. WEHI's
researchers have revealed this can impact gene expression
in the embryo, in an example of 'genomic imprinting'.
“We investigated whether a mother’s SMCHD1 protein could be transferred into a newly formed embryo, and how this impacted the expression of imprinted genes,” Ms Wanigasuriya said. “Using advanced microscopy to follow a fluorescently tagged version of SMCHD1, we could see that the maternal SMCHD1 protein persisted within embryos for at least five cell divisions. The mother’s SMCHD1 altered the imprinted gene expression – potentially leaving a lasting legacy in the offspring.”
Understanding SMCHD1
and Associate Professor Matthew Ritchie, pictured in 2019
Dr Gouil said the research revealed a critical window of time in early embryonic development during which the mother’s SMCHD1 could silence the expression of target genes.
“Using powerful new genomic analysis techniques, we were able to identify ten genes that were switched off by maternal SMCHD1 in the early embryo. This is the first time SMCHD1 from the egg has been identified as having a role in imprinting,” he said.
“While the effects we discovered were subtle, we know that events occurring in early embryonic development can have long-term effects on health. As well as extending our understanding of genomic imprinting, this research adds an extra dimension to the many ways we know parents can impact their offspring’s health.”
Professor Blewitt said the research also helped to explain recently discovered roles of SMCHD1 in certain diseases including developmental disorders such as Prader-Willi Syndrome (PWS) and Bosma arhinia microphthalmia syndrome (BAMS), as well as facioscapulohumeral muscular dystrophy (FSHD), a form of muscular dystrophy.
“Studying SMCHD1 in early embryos has uncovered new gene targets that this protein silences,” she said. “This could explain how changes in SMCHD1 activity contribute to diseases. We are currently leading a proprietary drug discovery effort at WEHI to leverage our knowledge around SMCHD1 and design novel therapies to treat developmental and degenerative disorders. This research broadens our understanding of how these novel drug candidates might impact gene expression.”
WEHI is open to enquiries from prospective industry partners and investors for the future co-development of these novel therapies towards clinical and market stages. Learn more.
This research was supported by the Australian National Health and Medical Research Council, the Bellberry-Viertel Senior Medical Research Fellowship and the Victorian Government.
WEHI Authors: Ms Iromi Wanigasuriya, Dr Quentin Gouil, Dr Sarah Kinkel, Mr Andrés Tapia del Fierro, Ms Tamara Beck, Ms Kelsey Breslin, Dr Andrew Keniry, Associate Professor Matthew Ritchie, Professor Marnie Blewitt
Media inquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Want to be informed of our most exciting discoveries? Subscribe to our quarterly newsletter, Illuminate.
Researchers have made a critical discovery about a gene which is dysfunctional in people with a form of muscular dystrophy called FSHD2.