- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Royalties distribution
- Start-up companies
- Partnering opportunities
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Samir Taoudi
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Stephen Wilcox
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Joel Chibert
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Human insulin enhanced with cone snail 'blue print'
2 June 2020
'Mini-Ins' by Professor Mike Lawrence.
Diabetes treatments could be improved following the development of a dramatically modified form of human insulin, called ‘Mini-Ins’, that successfully mimics the ultra-fast-acting properties of cone snail venom insulin.
Mini-Ins has demonstrated significant promise in laboratory models, rapidly lowering blood sugar levels after meals. It is well-tolerated by the immune system and lacks any propensity for long-term side effects – vital considerations when developing new diabetes treatments.
The study was a collaboration between the Walter and Eliza Hall Institute of Medical Research and the University of Utah, along with researchers from Australia’s University of Melbourne, La Trobe University, Flinders University and Monash Institute of Pharmaceutical Sciences. It was published today in Nature Structural & Molecular Biology.
At a glance
- Researchers have successfully enhanced human insulin with lessons from ultra-fast-acting cone snail venom insulin.
- Pre-clinical studies showed the modified insulin, Mini-Ins, rapidly lowered blood sugar levels and was well-tolerated by the immune system.
- Mini-Ins is now in development to achieve a safe form of human insulin that works faster than the current gold standard treatments.
Exciting proof-of-principle
The Institute’s lead researcher on the study, Professor Mike Lawrence, has been investigating the structure of insulins and their receptors for two decades.
Professor Lawrence said he was delighted the pre-clinical study had successfully enhanced human insulin using principles discovered in the venom of the marine cone snail, Conus geographus.
“We have completed the translational step from a cone snail venom insulin to a human look-alike, Mini-Ins, that is safe and well-tolerated by the immune system."
"Our findings also showed that Mini-Ins doesn’t activate the related insulin-like growth factor pathways that would increase the risk of cancer – something researchers need to absolutely avoid when developing new insulin treatments for diabetes.
“Even at this early stage of development, Mini-Ins was able to lower blood sugar levels as fast as the current best treatments that are in use. This tells us that with further development the response time could be made even shorter. For diabetes patients this could be life-changing,” Professor Lawrence said.
A frustrating imposition
According to the World Health Organization, diabetes impacts more than 422 million people worldwide. For many people living with diabetes, it can be challenging to consistently manage blood sugar levels by injecting insulin well before commencing each meal.
As a consequence, some people with diabetes find it hard to follow through with the injection regime, said Professor Lawrence.
“Our goal is to improve insulin treatments by shortening the timeframe it takes for them to work."
"Achieving this would help people with diabetes to more easily manage their condition which would in turn lead to better health outcomes,” he said.
Following cone snail clues
Australian arm of the study. [Photo taken pre COVID-19 pandemic]
Working closely with Professor Lawrence at the Institute is Dr John Menting, who has been involved for years in the research leading to this exciting milestone.
Dr Menting said the new findings built on earlier research that found marine cone snails had a remarkably fast-acting venom insulin.
“In 2016, along with our colleagues at the University of Utah, we successfully showed how cone snail venom insulins avoid the structural changes seen in human insulins.
“Developing Mini-Ins was like engineering an old machine to include modern components."
"Just like in engineering, our process required detailed images to know which ‘design changes’ to make.
"Applying extensive experience in structural biology we obtained images of cone snail venom insulin and its receptor at the Australian Synchrotron. These provided us with a ‘blueprint’ for enhancing human insulin by incorporating faster-acting cone snail venom insulin traits,” he said.
Progressing a therapeutic
The US San Fransisco-based biotechnology company Monolog is now progressing the Mini-Ins proof-of-concept towards the development of a therapeutic version that is safe and effective in humans.
Professor Lawrence said these were exciting next steps and that a future version of Mini-Ins could end up being used by patients around the world.
“The aim of this next phase is to progress treatment to clinical trials and hopefully, one day, achieve a safe and effective insulin treatment that works even faster than the current gold standard.
"Even being able to halve the pre-injection timeframe would make a huge difference for people living with diabetes,” he said.
The research was supported in Australia by the National Health and Medical Research Council. It was supported in the USA by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the JDRF.
Mini-Ins visualised
Media inquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Associate Professor Mike Lawrence and his team found venom extracted from a species of marine cone snail could hold the key to developing ‘ultra-fast-acting’ insulins, leading to more efficient diabetes treatments
A landmark discovery about how insulin docks on cells could help in the development of improved types of insulin for treating both type 1 and type 2 diabetes.
How inflammatory cells in fat contribute to type 2 diabetes
A five-year international trial has found that type 1 diabetes can be delayed by an immune therapy.
The therapy, teplizumab, delayed the onset of diabetes in participants by two years.
Dr John Wentworth discusses clinical trial of gastric banding
Our research has discovered stem cells in the adult pancreas that can be turned into insulin producing cells.
Want to be informed of our most exciting discoveries? Subscribe to our quarterly newsletter, Illuminate.