- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
Victorian Government funding accelerates new approaches to vaccine development for ovarian cancer
25 August 2022
Research working towards the development of vaccines that can stop ovarian cancer coming back has been bolstered through new Victorian Government funding.
The grant from the Victorian Medical Research Acceleration Fund (VMRAF) will help accelerate the clinical translation of a groundbreaking ovarian cancer trial co-led by WEHI and RMIT University.
The trial focuses on women who respond exceptionally well to ovarian cancer treatment, with the new grant enabling researchers to better understand these “super-responders” and use these insights to advance work on designing vaccines that can prevent recurrence.
The grant was announced by Victorian Minister for Innovation, Medical Research and the Digital Economy The Hon Jaala Pulford MP, as part of a new round of VMRAF funding.
At a glance
- WEHI-RMIT University research team awarded more than $498,000 by VMRAF for translation of a groundbreaking ovarian cancer clinical trial.
- The trial aims to understand the biology of ovarian cancer “super-responders” and learn how to trick a patient’s immune response so more women can benefit from treatment.
- Funding will help translate this knowledge to develop vaccines, diagnostic and prognostic tests to boost the number of ovarian cancer patients who achieve long-term remission.
Plebanski (left) with WEHI's Professor Clare Scott
(middle) and Dr Cassandra Vandenberg (right).
Every year more than 1200 women are diagnosed with ovarian cancer in Australia and nearly 1000 women die from the disease.
Project co-leader Professor Clare Scott AM said survival rates for ovarian cancer have not improved in over three decades, with one Australian woman dying from the disease every eight hours.
“Women with ovarian cancer have been waiting for more than 30 years for effective therapies to change the dread that inevitably follows their diagnosis,” Professor Scott, Joint Head of the Clinical Translation Centre and Laboratory Head at WEHI, said.
“This funding will enable us to work out what makes ‘super-responders’ so special and kickstarts the next stage - towards the development of new vaccine-based strategies for ovarian cancer.
“Our ultimate goal is a vaccine that can stop ovarian cancer coming back and could even be effective for preventing recurrence of other cancers.
“We are grateful for this funding support to rapidly accelerate the pace of our research, so that more women can benefit more quickly.”
Fighting recurrence
Despite good responses to initial surgery for ovarian cancer, more than 70% of women will experience recurrence, usually within the first three years. Most of these women will eventually die from their cancer.
To improve these outcomes, WEHI’s Professor Clare Scott AM, Associate Professor Chee Lee (NHMRC Clinical Trials Centre, University of Sydney), Professor Michael Friedlander (Prince of Wales Hospital, Sydney) and RMIT University’s Professor Magdalena Plebanski co-designed SOLACE2, a Phase 2 clinical trial running in 15 hospitals across Australia.
The trial aims to identify which women with ovarian cancer are most likely to be cured by early treatment with a combination of immunotherapy and PARP inhibitor therapy.
PARP inhibitors (PARPi) prevent cancer cells from repairing, allowing them to die. The powerful treatments have had unprecedented success in achieving long-term remission for some women with ovarian cancer.
The SOLACE2 trial is creating detailed immunological profiles of these super-responders as well as tracking the presence of antigens and neoantigens, which help boost the body’s immune response against cancer cells, to predict if a tumour is likely to return or spread.
The new VMRAF funding will support work to better predict who is likely to be a super-responder and identify target antigens to enable the development of vaccine-based strategies, including for other women with ovarian cancer.
Vaccine vision
RMIT University’s Distinguished Professor Magdalena Plebanski, project co-leader and SOLACE2 Translational Research Chair, said the multi-disciplinary research team would work towards the development of two types of vaccines to fight cancer. These would be personalised vaccines that can boost an individual’s immune response and vaccines to promote broad immunity.
“Innovation in vaccines boosted by the COVID-19 pandemic offers new pathways to deploy potential vaccines against non-traditional vaccine targets, such as cancer,” said Professor Plebanski, Head of the Cancer, Ageing and Vaccines Laboratory at the School of Health and Biomedical Sciences and Director for the Biomedical and Health Innovation Enabling Capability Platform at RMIT.
“We are grateful at the Cancer, Ageing and Vaccines Laboratory for this timely funding, which enables us to identify key targets for ovarian cancer vaccines.
“As well as identifying targets to help treat and prevent recurrence of existing cancers, our ultimate aim and motivation is to have vaccines that stop the cancer from taking root and spreading in the first place, which will help to prevent enormous suffering.”
Researchers will also work on new diagnostic and prognostic tests, including cancer and immune biomarkers, to precisely predict how well a patient will respond to PARPi/immunotherapy treatments.
The new project leverages WEHI’s extensive expertise in bioinformatics and analysis of genomics data, led by Principal Investigator Professor Tony Papenfuss.
The machine learning framework built for the project will also be relevant to other immunotherapy biomarker discovery projects, with the findings to be used for the development of treatments for other cancer types.
Impactful collaboration
WEHI Director Professor Doug Hilton AO said recent industry investment in new technologies for vaccine development, scale-up and production in Victoria offered great potential to streamline vaccines created from this research.
“We know that multi-disciplinary collaborations like these are critical to translating impactful science into tangible outcomes that will make real differences to peoples’ lives,” Professor Hilton said.
“But the translation of world-class Australian research into new therapies, like vaccines, is often hampered through a lack of funding to progress the research.
“This grant will not only accelerate the translation of this much-needed ovarian cancer research, but also increase capability, knowledge and expertise across the Victorian medical research sector.”
The SOLACE2 trial is being conducted by the Australia New Zealand Gynaecological Oncology Group (ANZGOG) in collaboration with the NHMRC Clinical Trials Centre, the University of Sydney. The trial is sponsored by the University of Sydney, and is conducted with support from AstraZeneca and its Group of Companies (SLHD RPA HREC Approval Reference: 2019/ETH07640).
Media enquiries
M: +61 475 751 811
E: communications@wehi.edu.au
Super Content:
Research led by Institute scientists is helping to match ovarian cancer patients with the right treatment for their cancer.
Want to be informed of our most exciting discoveries? Subscribe to our quarterly newsletter, Illuminate.