- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
International partnership may hold the key to new cancer therapies
6 April 2022
WEHI has joined forces with the leading science and technology company Merck KGaA, Darmstadt, Germany on a drug discovery campaign to find new cancer therapeutics.
The partnership will leverage WEHI’s expertise in minor splicing and the genetic regulation of rapid cell growth and proliferation.
At a glance
- WEHI has joined forces with the leading science and technology company Merck KGaA, Darmstadt, Germany on a drug discovery campaign to find new cancer therapeutics for a broad spectrum of cancers.
- WEHI scientists have shown that some cancer types are more vulnerable to inefficient minor splicing than normal cells. By therapeutically targeting this class of splicing, WEHI and Merck KGaA, Darmstadt, Germany scientists hope to stop these cancers from growing and spreading without harming healthy cells.
- The four-year agreement will allow researchers to progress the program through the drug discovery pipeline and into human clinical trials.
Developing a new class of cancer therapeutics
Splicing is the process by which introns, the non-coding regions of genes, are excised from the primary messenger RNA transcript and the exons are joined together to generate mature messenger RNA that directs the synthesis of proteins.
Heath, Dr Stephen Mieruszynski, Dr Kimberly
Morgan.
Cancers that carry a mutation in the KRAS gene, including liver and lung cancer, are dependent upon a sub-type of splicing that is particularly important to vigorously proliferating cells.
A team involving laboratories across WEHI and Merck KGaA, Darmstadt, Germany, will use high-throughput chemical screening to find and develop compounds that inhibit this sub-type of splicing and evaluate their potential as novel anti-cancer therapeutics.
WEHI lead scientist, cancer biologist Associate Professor Joan Heath, said the partnership between WEHI and Merck KGaA, Darmstadt, Germany would accelerate the development of new therapeutics that could be effective against a broad spectrum of cancers, not just those carrying mutations in the KRAS gene.
“KRAS positive cancers have proven difficult to treat as they rapidly become resistant to traditional and targeted therapies. We believe that compounds targeting a specific sub-set of splicing may prove effective against a broad range of rapidly growing cancers, not just liver and lung cancer.”
used to study development and cancer
The partnership builds on more than a decade of research by Associate Professor Heath, using zebrafish to identify genes essential for the rapid growth of the digestive organs during early development.
Associate Professor Heath said collaborating with Merck KGaA, Darmstadt, Germany to progress this research was an incredible boost for the project
“To work with like-minded researchers at Merck KGaA, Darmstadt, Germany who share our curiosity in this splicing process is a fantastic opportunity to develop a novel class of cancer therapeutics and I am thoroughly looking forward to progressing this work.”
“This collaboration will capitalise on WEHI’s pioneering work on the importance of minor splicing in a range of cancers with Merck KGaA, Darmstadt, Germany’s drug discovery and development expertise. Together, we will work towards developing a novel class of therapeutics for patients with hard-to-treat cancers. I am delighted to be working with the team at Merck KGaA, Darmstadt, Germany on this endeavour.”
Collaborative academic-industry partnership
WEHI Head of Biotechnology and Commercialisation Dr Anne-Laure Puaux said the agreement established strong business foundations between the two organisations.
“Academic-industry partnerships are critical to the successful translation of research discoveries into new therapeutics. This exciting new collaboration with Merck KGaA, Darmstadt, Germany represents a significant translational opportunity for our Institute and our ground-breaking RNA splicing research.” Dr Puaux said.
The four-year collaborative project will be conducted under the direction of a joint steering committee, leveraging existing capabilities and expertise within WEHI and Merck KGaA, Darmstadt, Germany. Post collaboration, Merck KGaA, Darmstadt, Germany will undertake clinical development, regulatory approvals, and commercial activities, while WEHI will receive milestone payments and royalties on sales. Financial terms of the collaboration remain undisclosed.
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Why are zebrafish increasingly used in medical research? Joan Heath writes in The Conversation.