- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Scientists uncover gene architects responsible for body’s blueprint
14 April 2015
Melbourne researchers have identified two key proteins that act as genetic ‘architects’, creating the blueprint needed by embryos during the earliest stages of their development.
Professor Anne Voss have discovered the genes that
create the 'blueprint' for embryonic development.
Previous work by the research team from the Walter and Eliza Hall Institute showed that the protein MOZ could relay external ‘messages’ to the developing embryo, revealing a mechanism for how the environment could affect development in very early pregnancy.
Dr Bilal Sheikh, Associate Professor Tim Thomas, Associate Professor Anne Voss and colleagues have now discovered that MOZ and the protein BMI1 play opposing roles in giving developing embryos the set of instructions needed to ensure that body segments including the spine, nerves and blood vessels develop correctly and in the right place.
Associate Professor Voss said the study revealed that the proteins tightly regulated Hox gene expression in early embryonic development. “In very early development, when the embryo is still just a cluster of dividing cells, the embryo must become ‘organised’ so that the body tissues and organs develop correctly, with everything in its right place,” Associate Professor Voss said.
“The embryo is organised along an ‘axis’ from head to tail, and a standard pattern of development is established that subdivides the body into segments, with each segment responsible for producing specific aspects of tissues and organs, including the vertebral column, spinal cord and nerves.
“We showed that the proteins MOZ and BMI1 were important for initiating activation of the Hox genes – section by section – providing the blueprint the developing organism needs for proper development.”
Associate Professor Voss said that, though they worked together, MOZ and BMI1 played opposing roles. “We discovered that MOZ and BMI1 were important for initiating and correctly timing Hox gene expression, ensuring the genes were activated at the right time and in the right place,” she said.
MOZ was responsible for activating the genes, while BMI1 prevented Hox genes being switched on prematurely, Associate Professor Voss said.
She said the research also showed that significantly reducing Hox gene expression still allowed normal development, as long as the timing and location of expression were correct.
“We found that if the Hox genes were activated too early or late, it had significant repercussions for the developing embryo, such as malformations of the spine,” Associate Professor Voss said. “Interestingly, we also found that producing an ‘accurate’ amount of MOZ or BMI1 in developing embryos was not nearly as important for correct development as when and where Hox genes were activated.”
Importantly, MOZ and BMI1 could provide a mechanism to transmit signals from the environment to the developing embryo, with potentially devastating consequences.
“We know that Hox genes can be directly affected by too much vitamin A, which can cause severe deformities in the embryo,” Associate Professor Voss said. “Substances or environmental challenges that impact MOZ or BMI1 expression could affect when and where Hox genes are expressed, causing defects in the developing embryo.”
Dr Anne Voss said the research team’s discovery overturned a decades-old belief about embryonic development. “A lot of what we know about embryonic development and how it is controlled was learned from studies of fruit flies,” Associate Professor Voss said. “In this study we showed a key difference; two molecules that have only a maintenance role in fruit flies are indispensible for initiating the blueprint in mammalian development.”
The research was published today in the journal Proceedings of the National Academy of Sciences and was funded by the National Health and Medical Research Council and the Victorian Government. Dr Sheikh was a PhD student at The University of Melbourne during part of this research study.
Further information
Liz Williams
Media and Publications Manager
M: 0428 034 089
E: williams@wehi.edu.au
Super Content:
The discovery of a ‘switch’ that modifies a gene known to be essential for normal heart development could explain variations in the severity of birth defects in children with DiGeorge syndrome.